Interactions of the periplasmic binding protein CeuE with Fe(III) n-LICAM4− siderophore analogues of varied linker length
نویسندگان
چکیده
Bacteria use siderophores to mediate the transport of essential Fe(III) into the cell. In Campylobacter jejuni the periplasmic binding protein CeuE, an integral part of the Fe(III) transport system, has adapted to bind tetradentate siderophores using a His and a Tyr side chain to complete the Fe(III) coordination. A series of tetradentate siderophore mimics was synthesized in which the length of the linker between the two iron-binding catecholamide units was increased from four carbon atoms (4-LICAM4-) to five, six and eight (5-, 6-, 8-LICAM4-, respectively). Co-crystal structures with CeuE showed that the inter-planar angles between the iron-binding catecholamide units in the 5-, 6- and 8-LICAM4- structures are very similar (111°, 110° and 110°) and allow for an optimum fit into the binding pocket of CeuE, the inter-planar angle in the structure of 4-LICAM4- is significantly smaller (97°) due to restrictions imposed by the shorter linker. Accordingly, the protein-binding affinity was found to be slightly higher for 5- compared to 4-LICAM4- but decreases for 6- and 8-LICAM4-. The optimum linker length of five matches that present in natural siderophores such as enterobactin and azotochelin. Site-directed mutagenesis was used to investigate the relative importance of the Fe(III)-coordinating residues H227 and Y288.
منابع مشابه
Bacteria in an intense competition for iron: Key component of the Campylobacter jejuni iron uptake system scavenges enterobactin hydrolysis product.
To acquire essential Fe(III), bacteria produce and secrete siderophores with high affinity and selectivity for Fe(III) to mediate its uptake into the cell. Here, we show that the periplasmic binding protein CeuE of Campylobacter jejuni, which was previously thought to bind the Fe(III) complex of the hexadentate siderophore enterobactin (Kd ∼ 0.4 ± 0.1 µM), preferentially binds the Fe(III) compl...
متن کاملStudies of a Tripodal Biomimetic Siderophore Analog: An Efficient Encapsulation for Fe(III) Ion
A new tris-(2-aminoethyl)amine (TREN) capped tripodal Schiff base ligand has been developed by mimicking structural features of a natural siderophore, Bacillibactin, by substituting the catechol units with salicylaldehyde and employing amino acid as spacer. Synthesis of the ligand N-[2-[bis[2-[[2-[(2-hydroxyphenyl)methylamino]acetyl] amino]ethyl]amino]ethyl]-2-[(2-hydroxyphenyl)methylamino]...
متن کاملDirect Evidence of Iron Uptake by the Gram-Positive Siderophore-Shuttle Mechanism without Iron Reduction
Iron is an essential element for all organisms, and microorganisms produce small molecule iron-chelators, siderophores, to efficiently acquire Fe(III). Gram-positive bacteria possess lipoprotein siderophore-binding proteins (SBPs) on the membrane. Some of the SBPs bind both apo-siderophores (iron-free) and Fe-siderophore (iron-chelated) and only import Fe-siderophores. When the SBP initially bi...
متن کاملThe role of electrostatics in siderophore recognition by the immunoprotein Siderocalin.
Iron is required for virulence of most bacterial pathogens, many of which rely on siderophores, small-molecule chelators, to scavenge iron in mammalian hosts. As an immune response, the human protein Siderocalin binds both apo and ferric siderophores in order to intercept delivery of iron to the bacterium, impeding virulence. The introduction of steric clashes into the siderophore structure is ...
متن کاملGram-positive siderophore-shuttle with iron-exchange from Fe-siderophore to apo-siderophore by Bacillus cereus YxeB.
Small molecule iron-chelators, siderophores, are very important in facilitating the acquisition of Fe(III), an essential element for pathogenic bacteria. Many Gram-negative outer-membrane transporters and Gram-positive lipoprotein siderophore-binding proteins have been characterized, and the binding ability of outer-membrane transporters and siderophore-binding proteins for Fe-siderophores has ...
متن کامل